ASTRONOMY 161

Introduction to Solar System Astronomy

Astronomy 161 (02439-3)
 Winter Quarter 2007
 MWF 10:00-11:18 am

Professor: D. L. DePoy
Office: 4059 McPherson Lab
Office hours: MTWTh 8-10am
T 2-5pm
Th 2-3pm
Email: depoy@astronomy.ohio-state.edu

TA: K. Schlesinger
Office: 4020 McPherson Lab
Office hours: pending
Email: schlesinger.23@osu.edu

Text: Universe (7 ${ }^{\text {th }}$ Edition) by Freedman and Kaufman
In-class Exams: Jan 19, Feb 9, Mar2
Final: March 13, 9:30 a.m.
Grade: 75\% In-class Exams, 25\%
Final

Astronomy 161: The Web Page

www.astronomy.ohio-state.edu/~depoy/Astro161/astro161.html

The Web page for course contains the syllabus, lecture notes (as the course progresses), and other information, including links to various WWW sites related to astronomy.

What is astronomy?

$$
\begin{aligned}
& \text { "astron" = star } \\
& \text { "nomos" = law }
\end{aligned}
$$

Astronomy is the science of stars and clusters of stars, galaxies and clusters of galaxies, planets, "dwarf planets" and their satellites, asteroids and comets, interstellar gas and dust (and anything else in the Universe).

Star: The Sun

150 million kilometers away
1.4 million kilometers across

Cluster of Stars: The Pleiades:

Galaxy: The Andromeda Galaxy

2,200,200 light-years away. 80;000 light-years across

Cluster of Gálaxies: The Cóma

,
320 million light-years away 10. million light-years acrósś

Gas \& Dust: The Lagoon Nebula

5000 light-years away 4. 50 light-years across

Solar System

13,000 kilometers across

Satellite: The Moon

Asteroid: Eros

33 kilometers long

Comet: Comet Hale-Bopp

nucleus: 10 kilometers across
tail: 100 million kilometers long

What is Science?

The SYSTEMATIC study of the Universe

Gather facts

Modify hypothesis

Guess an explanation (Guess=hypothesis)

MAIN QUESTIONS

1) What have astronomers learned?
2) HOW HAVE THEY LEARNED IT?

Practical matters:

Astronomers use powers-of-ten notation to write LARGE and small numbers.
(Section 1-6 of textbook)

$$
1000=10^{3}
$$

$$
1,000,000=10^{6}
$$

$$
0.001=1 / 1000=10^{-3}
$$

$$
2,200,000=2.2 \times 10^{6}
$$

Astronomers measure length in meters, astronomical units, \& light-years

Basic unit of length $=$ meter

Distance from Earth to Sun $\equiv 1$ astronomical unit (AU)
$=1.5 \times 10^{11}$ meters
$=150$ million kilometers ($=93$ million miles)

Distance traveled by light in one year $\equiv 1$ light year (ly)
$=9.5 \times 10^{15}$ meters
$=63,000$ astronomical units

Astronomers measure time in seconds \& years

Basic unit of time $=$ second

Time for Earth to go around Sun $\equiv 1$ year

$$
=3651 / 4 \text { days }=3.2 \times 10^{7} \text { seconds }
$$

Age of astronomer $\approx 1.2 \times 10^{9}$ seconds ≈ 40 years

Age of Earth $=4.6 \times 10^{9}$ years

Astronomers measure mass in kilograms

Note: mass and weight are NOT the same thing.
MASS = amount of matter.
WEIGHT = force with which gravity tugs on matter.
Mass = 1 kilogram
Weight $=35$ ounces on Earth;
6 ounces on Moon;
13 ounces on Mars.

Mass of astronomer

$=70$ kilograms (kg)

Mass of Earth

$$
=6 \times 10^{24} \mathrm{~kg}
$$

Mass of Sun
$=2 \times 10^{30} \mathrm{~kg}$
$=330,000 \times$ mass of Earth

